\(\int \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx\) [201]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 28, antiderivative size = 258 \[ \int \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\frac {363 (-1)^{3/4} a^{5/2} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{64 d}+\frac {(4+4 i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {149 i a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{64 d}+\frac {107 a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{96 d}+\frac {17 i a^2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{24 d}-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d} \]

[Out]

363/64*(-1)^(3/4)*a^(5/2)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d+(4+4*I)*a^(5/
2)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d-149/64*I*a^2*tan(d*x+c)^(1/2)*(a+I*a*tan
(d*x+c))^(1/2)/d+107/96*a^2*(a+I*a*tan(d*x+c))^(1/2)*tan(d*x+c)^(3/2)/d+17/24*I*a^2*(a+I*a*tan(d*x+c))^(1/2)*t
an(d*x+c)^(5/2)/d-1/4*a^2*(a+I*a*tan(d*x+c))^(1/2)*tan(d*x+c)^(7/2)/d

Rubi [A] (verified)

Time = 0.92 (sec) , antiderivative size = 258, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.321, Rules used = {3637, 3678, 3682, 3625, 211, 3680, 65, 223, 209} \[ \int \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\frac {363 (-1)^{3/4} a^{5/2} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{64 d}+\frac {(4+4 i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {17 i a^2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{24 d}+\frac {107 a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{96 d}-\frac {149 i a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{64 d} \]

[In]

Int[Tan[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

(363*(-1)^(3/4)*a^(5/2)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(64*d) + (
(4 + 4*I)*a^(5/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d - (((149*I)/64)*
a^2*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/d + (107*a^2*Tan[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]])
/(96*d) + (((17*I)/24)*a^2*Tan[c + d*x]^(5/2)*Sqrt[a + I*a*Tan[c + d*x]])/d - (a^2*Tan[c + d*x]^(7/2)*Sqrt[a +
 I*a*Tan[c + d*x]])/(4*d)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3637

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[b^2*(a + b*Tan[e + f*x])^(m - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(m + n - 1))), x] + Dist[a/(d*(m + n - 1
)), Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^n*Simp[b*c*(m - 2) + a*d*(m + 2*n) + (a*c*(m - 2) +
b*d*(3*m + 2*n - 4))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a
^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && GtQ[m, 1] && NeQ[m + n - 1, 0] && (IntegerQ[m] || Intege
rsQ[2*m, 2*n])

Rule 3678

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[B*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(f*(m + n))), x] +
Dist[1/(a*(m + n)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*A*c*(m + n) - B*(b*c*m + a*
d*n) + (a*A*d*(m + n) - B*(b*d*m - a*c*n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] &
& NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[n, 0]

Rule 3680

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[b*(B/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 3682

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A*b + a*B)/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x]
, x] - Dist[B/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a, b
, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {1}{4} a \int \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} \left (\frac {15 a}{2}+\frac {17}{2} i a \tan (c+d x)\right ) \, dx \\ & = \frac {17 i a^2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{24 d}-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {1}{12} \int \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} \left (-\frac {85 i a^2}{4}+\frac {107}{4} a^2 \tan (c+d x)\right ) \, dx \\ & = \frac {107 a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{96 d}+\frac {17 i a^2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{24 d}-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {\int \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)} \left (-\frac {321 a^3}{8}-\frac {447}{8} i a^3 \tan (c+d x)\right ) \, dx}{24 a} \\ & = -\frac {149 i a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{64 d}+\frac {107 a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{96 d}+\frac {17 i a^2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{24 d}-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {\int \frac {\sqrt {a+i a \tan (c+d x)} \left (\frac {447 i a^4}{16}-\frac {1089}{16} a^4 \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}} \, dx}{24 a^2} \\ & = -\frac {149 i a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{64 d}+\frac {107 a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{96 d}+\frac {17 i a^2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{24 d}-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}-\frac {1}{128} (363 i a) \int \frac {(a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx+\left (4 i a^2\right ) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx \\ & = -\frac {149 i a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{64 d}+\frac {107 a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{96 d}+\frac {17 i a^2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{24 d}-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}-\frac {\left (363 i a^3\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {a+i a x}} \, dx,x,\tan (c+d x)\right )}{128 d}+\frac {\left (8 a^4\right ) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \\ & = \frac {(4+4 i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {149 i a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{64 d}+\frac {107 a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{96 d}+\frac {17 i a^2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{24 d}-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}-\frac {\left (363 i a^3\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+i a x^2}} \, dx,x,\sqrt {\tan (c+d x)}\right )}{64 d} \\ & = \frac {(4+4 i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {149 i a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{64 d}+\frac {107 a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{96 d}+\frac {17 i a^2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{24 d}-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}-\frac {\left (363 i a^3\right ) \text {Subst}\left (\int \frac {1}{1-i a x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{64 d} \\ & = \frac {363 (-1)^{3/4} a^{5/2} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{64 d}+\frac {(4+4 i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {149 i a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{64 d}+\frac {107 a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{96 d}+\frac {17 i a^2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{24 d}-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 6.49 (sec) , antiderivative size = 475, normalized size of antiderivative = 1.84 \[ \int \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\frac {4 \sqrt {2} a^2 \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {4 a^{5/2} \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {1+i \tan (c+d x)} \sqrt {i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {43 \sqrt [4]{-1} a^2 \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right ) \sqrt {a+i a \tan (c+d x)}}{64 d \sqrt {1+i \tan (c+d x)}}-\frac {149 i a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{64 d}+\frac {107 a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{96 d}+\frac {17 i a^2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{24 d}-\frac {a^2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}-\frac {a^{3/2} \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d \sqrt {1+i \tan (c+d x)} \sqrt {\tan (c+d x)}} \]

[In]

Integrate[Tan[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

(4*Sqrt[2]*a^2*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[I*a*Tan[c + d*x]])/(d
*Sqrt[Tan[c + d*x]]) - (4*a^(5/2)*ArcSinh[Sqrt[I*a*Tan[c + d*x]]/Sqrt[a]]*Sqrt[1 + I*Tan[c + d*x]]*Sqrt[I*a*Ta
n[c + d*x]])/(d*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) - (43*(-1)^(1/4)*a^2*ArcSinh[(-1)^(1/4)*Sqrt[Ta
n[c + d*x]]]*Sqrt[a + I*a*Tan[c + d*x]])/(64*d*Sqrt[1 + I*Tan[c + d*x]]) - (((149*I)/64)*a^2*Sqrt[Tan[c + d*x]
]*Sqrt[a + I*a*Tan[c + d*x]])/d + (107*a^2*Tan[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]])/(96*d) + (((17*I)/24
)*a^2*Tan[c + d*x]^(5/2)*Sqrt[a + I*a*Tan[c + d*x]])/d - (a^2*Tan[c + d*x]^(7/2)*Sqrt[a + I*a*Tan[c + d*x]])/(
4*d) - (a^(3/2)*ArcSinh[Sqrt[I*a*Tan[c + d*x]]/Sqrt[a]]*Sqrt[I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(d*
Sqrt[1 + I*Tan[c + d*x]]*Sqrt[Tan[c + d*x]])

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 491 vs. \(2 (204 ) = 408\).

Time = 1.00 (sec) , antiderivative size = 492, normalized size of antiderivative = 1.91

method result size
derivativedivides \(-\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (96 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right )-272 i \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )+384 i \sqrt {2}\, \sqrt {i a}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +384 \sqrt {2}\, \sqrt {i a}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +1089 i \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a +894 i \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-428 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+1536 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}\right )}{384 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(492\)
default \(-\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (96 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right )-272 i \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )+384 i \sqrt {2}\, \sqrt {i a}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +384 \sqrt {2}\, \sqrt {i a}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +1089 i \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a +894 i \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-428 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+1536 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}\right )}{384 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(492\)

[In]

int(tan(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/384/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)*a^2*(96*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)
*(-I*a)^(1/2)*tan(d*x+c)^3-272*I*tan(d*x+c)^2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2)+3
84*I*2^(1/2)*(I*a)^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/
(tan(d*x+c)+I))*a+384*2^(1/2)*(I*a)^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a
+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a+1089*I*(-I*a)^(1/2)*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c
)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*a+894*I*(-I*a)^(1/2)*(I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-4
28*(-I*a)^(1/2)*(I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)+1536*ln(1/2*(2*I*a*tan(d*x+c)+2*(
a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*a*(-I*a)^(1/2))/(a*tan(d*x+c)*(1+I*tan(d*x+c)
))^(1/2)/(I*a)^(1/2)/(-I*a)^(1/2)

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 769 vs. \(2 (192) = 384\).

Time = 0.27 (sec) , antiderivative size = 769, normalized size of antiderivative = 2.98 \[ \int \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\text {Too large to display} \]

[In]

integrate(tan(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/192*(sqrt(2)*(-845*I*a^2*e^(7*I*d*x + 7*I*c) - 1275*I*a^2*e^(5*I*d*x + 5*I*c) - 1135*I*a^2*e^(3*I*d*x + 3*I*
c) - 321*I*a^2*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*
x + 2*I*c) + 1)) + 96*sqrt(131769/4096*I*a^5/d^2)*(d*e^(6*I*d*x + 6*I*c) + 3*d*e^(4*I*d*x + 4*I*c) + 3*d*e^(2*
I*d*x + 2*I*c) + d)*log(1/363*(363*sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*s
qrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + 128*I*sqrt(131769/4096*I*a^5/d^2)*d*e^(I*d*x + I
*c))*e^(-I*d*x - I*c)/a^2) - 96*sqrt(131769/4096*I*a^5/d^2)*(d*e^(6*I*d*x + 6*I*c) + 3*d*e^(4*I*d*x + 4*I*c) +
 3*d*e^(2*I*d*x + 2*I*c) + d)*log(1/363*(363*sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*
c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) - 128*I*sqrt(131769/4096*I*a^5/d^2)*d*e^
(I*d*x + I*c))*e^(-I*d*x - I*c)/a^2) - 96*sqrt(32*I*a^5/d^2)*(d*e^(6*I*d*x + 6*I*c) + 3*d*e^(4*I*d*x + 4*I*c)
+ 3*d*e^(2*I*d*x + 2*I*c) + d)*log(1/4*(4*sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c)
+ 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + I*sqrt(32*I*a^5/d^2)*d*e^(I*d*x + I*c))*e
^(-I*d*x - I*c)/a^2) + 96*sqrt(32*I*a^5/d^2)*(d*e^(6*I*d*x + 6*I*c) + 3*d*e^(4*I*d*x + 4*I*c) + 3*d*e^(2*I*d*x
 + 2*I*c) + d)*log(1/4*(4*sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e
^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) - I*sqrt(32*I*a^5/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/
a^2))/(d*e^(6*I*d*x + 6*I*c) + 3*d*e^(4*I*d*x + 4*I*c) + 3*d*e^(2*I*d*x + 2*I*c) + d)

Sympy [F(-1)]

Timed out. \[ \int \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\text {Timed out} \]

[In]

integrate(tan(d*x+c)**(5/2)*(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\int { {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \tan \left (d x + c\right )^{\frac {5}{2}} \,d x } \]

[In]

integrate(tan(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((I*a*tan(d*x + c) + a)^(5/2)*tan(d*x + c)^(5/2), x)

Giac [F(-2)]

Exception generated. \[ \int \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(tan(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:The choice was done assuming 0=[0]Warning, replacing 0 by -99, a substitution variable should perhaps be pu
rged.Warnin

Mupad [F(-1)]

Timed out. \[ \int \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\int {\mathrm {tan}\left (c+d\,x\right )}^{5/2}\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2} \,d x \]

[In]

int(tan(c + d*x)^(5/2)*(a + a*tan(c + d*x)*1i)^(5/2),x)

[Out]

int(tan(c + d*x)^(5/2)*(a + a*tan(c + d*x)*1i)^(5/2), x)